+++ description = " 多尺度材料模拟与计算 " external_link = "" vacancy_id = "" +++
多尺度材料模拟与计算¶
约 945 个字 预计阅读时间 3 分钟
- 课程代码:MSE6701H
- 学分/学时:3.0/48
- 授课对象:研究生
- 授课语言:中文
- 开课学期:秋季学期
- 课程类型:专业基础课
- 开课学院:材料科学与工程学院
- 任课教师:孔令体、刘桂森、刘泓
课程内容介绍¶
本课程是对材料科学与工程学科研究生的专业基础课,旨在培养学生材料科学计算的理念、概念与技能。主要讲授材料科学问题中跨尺度模拟与计算的概念与方法,着重介绍采用电子层次的第一性原理计算、原子及分子尺度的分子动力学模拟等方法的基本概念、基本原理、基本方法和典型应用,简要介绍介观、宏观尺度模拟方法,以及跨尺度模拟与计算、高通量计算与材料基因组的概念,使学生较为系统地掌握多尺度材料模拟与计算的基本概念和技能,深化对材料 " 结构 - 性能 " 本构关系的理解,激发并拓宽学生的材料研究理念与思维模式,使其能够运用新方法解决材料科学中的多尺度问题。本课程的实验教学内容涵盖数值模拟、统计分析、数据可视化等相关技术,并将介绍各尺度模拟计算的常用软件及可视化软件。
课程大纲¶
课程大纲 pdf 请点击:MSE6701H《多尺度材料模拟与计算》教学大纲.pdf。
-
Overview
- Introduction
- Materials Science and Engineering
- Modeling and Simulation
- Multiscale: temporal and spatial
- Multiscale Modeling and Simulation: examples
- MMMS: history, state of the art, and outlook
- Tools and requirements
- Course outline
-
Electronic Scale method:Density functional theory
- Quantum mechanics
- Born-Oppenhemier Approximation
- Hartree Fock
- DFT
- Kohn-Sham
- Exchange-correlation functionals
-
DFT for crystals
- Math: Fourier Transformation
- Delta function
- Crystal lattice: density distribution, unit cell
- Bloch theorem
- Plane waves
-
Practical concerns
- k-sampling
- convergence tests
- Smearing methods
- Plane wave cutoff energy
- Pseudopotential
- Boundary condition
-
DFT Hands-on
- Linux and VASP
- Single point energy calculation
- Convergence tests
- Lattice constant and bulk modulus
- Bond length and relaxation
- Band structure of Cu
- Band structure of graphene
-
Atomic Scale Method
- Development and algorithm
- Development of MD
- Basic idea, flowchart
- Basic algorithm
- Demonstration: spring oscillator
- Timestep and temporal-spatial limitations
- Periodic boundary condition
- Minimum image convention
- Intro to LAMMPS
-
Classical Interatomic potentials
- Pair potentials
- Truncation scheme
- Many-body potentials
- Force evaluation
- Neighbor list
- Demonstration: a system of Lennard-Jones particles
-
Molecular Statics to Molecular dynamics
- Molecular statics:Minimization
- Statistical Mechanics: Ensembles (NVE, NVT, …)
- Temperature, pressure: Thermostat, barostat
- Molecular dynamics: algorithm
-
Model preparation and results analysis
- Crystal structure
- Surface, Dislocations
- Molecular Statics: relaxation
- Visualization: Ovito
- Running a simulation: initialization, running, and analysis
- Structure analysis (pair correlation function, common neighbor analysis), Property evaluation (Energy, temperature, pressure, thermal capacity, deformation, melting and solidification)
-
MD Hands-on (I)
- Model creation and using of LAMMPS
- Molecular statics
- Dislocation motion under shear
- Structure analysis
-
MD Hands-on (II)
- Melting point calculation: FCC Cu
- Diffusion coefficients from Einstein relation
- Phonon dispersion of di-atomic chain and Cu
- Discussion: how long, how large?
-
Mesoscale Method
- Basic idea, basic physical law
- Order parameter (field of phases)
- Sharp interface, diffuse interface
- Driving force for Micro-structure evolution: the 2nd law of thermodynamics, the reduction of free energy
- Decrease of free energy → governing equation
- Non-conserved field: Ginzburg-Landau,
- Conserved field: Cahn-Hilliard,
-
Free energy functional, numerical methods to solve PDEs
- Chemical energy
- Interface energy (gradient energy)
- Elastic energy
- Others: electrostatic energy, magnetostatic energy, etc.)
- Finite difference method
- Finite element method
- Fast Fourier Transformation
-
PF Hands-on (I)
- solidification, liquid → solid
- dendrite
- recrystallization (multi-phase)
-
PF Hands-on (II)
- dislocation
-
Summary and Outlooks
课程资源¶
参考教材¶
- June Gunn Lee, Computational Materials Science: An Introduction, CRC press, 2016.
- Richard LeSar, Introduction to Computational Materials Science Fundamentals to Applications, Cambridge University Press, 2013.
- D. Frenkel and B. Smit. Understanding Molecular Simulation. 2nd ed. Burlington, MA: Academic Press, 2001.
- K Capelle, A Bird's-Eye View of Density-Functional Theory, Brazilian Journal of Physics, 36(4A):1318-1343, 2006.
- Ellad B. Tadmor and Ronald E. Miller, Modeling Materials: Continuum, Atomistic and Multiscale Techniques, Cambridge University Press, 2011.
- S. Yip, Handbook of Materials Modeling, Springer, New York, 2005.